6 research outputs found

    RADAR-vegetation structural perpendicular index (R-VSPI) for the quantification of wildfire impact and post-fire vegetation recovery

    Get PDF
    The precise information on fuel characteristics is essential for wildfire modelling and management. Satellite remote sensing can provide accurate and timely measurements of fuel characteristics. However, current estimates of fuel load changes from optical remote sensing are obstructed by seasonal cloud cover that limits their continuous assessments. This study utilises remotely sensed Synthetic-Aperture Radar (SAR) (Sentinel-1 backscatter) data as an alternative to optical-based imaging (Sentinel-2 scaled surface reflectance). SAR can penetrate clouds and offers high-spatial and medium-temporal resolution datasets and can hence complement the optical dataset. Inspired by the optical-based Vegetation Structural Perpendicular Index (VSPI), an SAR-based index termed RADAR-VSPI (R-VSPI) is introduced in this study. R-VSPI characterises the spatio-temporal changes in fuel load due to wildfire and the subsequent vegetation recovery thereof. The R-VSPI utilises SAR backscatter (σ°) from the co-polarized (VV) and cross-polarized (VH) channels at a centre frequency of 5.4 GHz. The newly developed index is applied over major wildfire events that occurred during the “Black Summer” wildfire season (2019–2020) in southern Australia. The condition of the fuel load was mapped every 5 (any orbit) to 12 (same orbit) days at an aggregated spatial resolution of 110 m. The results show that R-VSPI was able to quantify fuel depletion by wildfire (relative to healthy vegetation) and monitor its subsequent post-fire recovery. The information on fuel condition and heterogeneity improved at high-resolution by adapting the VSPI on a dual-polarization SAR dataset (R-VSPI) compared to the historic forest fuel characterisation methods (that used visible and infrared bands only for fuel estimations). The R-VSPI thus provides a complementary source of information on fuel load changes in a forest landscape compared to the optical-based VSPI, in particular when optical observations are not available due to cloud cover

    Association of acute toxic encephalopathy with litchi consumption in an outbreak in Muzaffarpur, India, 2014: a case-control study

    Get PDF
    Background Outbreaks of unexplained illness frequently remain under-investigated. In India, outbreaks of an acute neurological illness with high mortality among children occur annually in Muzaffarpur, the country’s largest litchi cultivation region. In 2014, we aimed to investigate the cause and risk factors for this illness. Methods In this hospital-based surveillance and nested age-matched case-control study, we did laboratory investigations to assess potential infectious and non-infectious causes of this acute neurological illness. Cases were children aged 15 years or younger who were admitted to two hospitals in Muzaffarpur with new-onset seizures or altered sensorium. Age-matched controls were residents of Muzaffarpur who were admitted to the same two hospitals for a non-neurologic illness within seven days of the date of admission of the case. Clinical specimens (blood, cerebrospinal fluid, and urine) and environmental specimens (litchis) were tested for evidence of infectious pathogens, pesticides, toxic metals, and other non-infectious causes, including presence of hypoglycin A or methylenecyclopropylglycine (MCPG), naturally-occurring fruit-based toxins that cause hypoglycaemia and metabolic derangement. Matched and unmatched (controlling for age) bivariate analyses were done and risk factors for illness were expressed as matched odds ratios and odds ratios (unmatched analyses). Findings Between May 26, and July 17, 2014, 390 patients meeting the case definition were admitted to the two referral hospitals in Muzaffarpur, of whom 122 (31%) died. On admission, 204 (62%) of 327 had blood glucose concentration of 70 mg/dL or less. 104 cases were compared with 104 age-matched hospital controls. Litchi consumption (matched odds ratio [mOR] 9·6 [95% CI 3·6 – 24]) and absence of an evening meal (2·2 [1·2–4·3]) in the 24 h preceding illness onset were associated with illness. The absence of an evening meal significantly modified the effect of eating litchis on illness (odds ratio [OR] 7·8 [95% CI 3·3–18·8], without evening meal; OR 3·6 [1·1–11·1] with an evening meal). Tests for infectious agents and pesticides were negative. Metabolites of hypoglycin A, MCPG, or both were detected in 48 [66%] of 73 urine specimens from case-patients and none from 15 controls; 72 (90%) of 80 case-patient specimens had abnormal plasma acylcarnitine profiles, consistent with severe disruption of fatty acid metabolism. In 36 litchi arils tested from Muzaffarpur, hypoglycin A concentrations ranged from 12·4 μg/g to 152·0 μg/g and MCPG ranged from 44·9 μg/g to 220·0 μg/g. Interpretation Our investigation suggests an outbreak of acute encephalopathy in Muzaffarpur associated with both hypoglycin A and MCPG toxicity. To prevent illness and reduce mortality in the region, we recommended minimising litchi consumption, ensuring receipt of an evening meal and implementing rapid glucose correction for suspected illness. A comprehensive investigative approach in Muzaffarpur led to timely public health recommendations, underscoring the importance of using systematic methods in other unexplained illness outbreaks

    RADAR-Vegetation Structural Perpendicular Index (R-VSPI) for the Quantification of Wildfire Impact and Post-Fire Vegetation Recovery

    No full text
    The precise information on fuel characteristics is essential for wildfire modelling and management. Satellite remote sensing can provide accurate and timely measurements of fuel characteristics. However, current estimates of fuel load changes from optical remote sensing are obstructed by seasonal cloud cover that limits their continuous assessments. This study utilises remotely sensed Synthetic-Aperture Radar (SAR) (Sentinel-1 backscatter) data as an alternative to optical-based imaging (Sentinel-2 scaled surface reflectance). SAR can penetrate clouds and offers high-spatial and medium-temporal resolution datasets and can hence complement the optical dataset. Inspired by the optical-based Vegetation Structural Perpendicular Index (VSPI), an SAR-based index termed RADAR-VSPI (R-VSPI) is introduced in this study. R-VSPI characterises the spatio-temporal changes in fuel load due to wildfire and the subsequent vegetation recovery thereof. The R-VSPI utilises SAR backscatter (σ°) from the co-polarized (VV) and cross-polarized (VH) channels at a centre frequency of 5.4 GHz. The newly developed index is applied over major wildfire events that occurred during the “Black Summer” wildfire season (2019–2020) in southern Australia. The condition of the fuel load was mapped every 5 (any orbit) to 12 (same orbit) days at an aggregated spatial resolution of 110 m. The results show that R-VSPI was able to quantify fuel depletion by wildfire (relative to healthy vegetation) and monitor its subsequent post-fire recovery. The information on fuel condition and heterogeneity improved at high-resolution by adapting the VSPI on a dual-polarization SAR dataset (R-VSPI) compared to the historic forest fuel characterisation methods (that used visible and infrared bands only for fuel estimations). The R-VSPI thus provides a complementary source of information on fuel load changes in a forest landscape compared to the optical-based VSPI, in particular when optical observations are not available due to cloud cover

    Fusing high-resolution SAR and optical time-series for monitoring post-natural disaster

    No full text
    Developing methods to create pre-operational datasets that advance vegetation monitoring by combining various satellite remote sensing sensors.To assess the utility of fusing SAR and Optical datasets for tracking burnt severity and vegetation recovery against currently used operational indices

    Not Available

    No full text
    Not AvailableIn India, stubble burning is frequently practiced in the dominant rice-growing states of the Indo-Gangetic Plains, primarily in Punjab, Haryana and Uttar Pradesh. We attempted monitoring and mapping of the active fire events in real time for all the 3 states by acquiring thermal datasets from 3 different sensors i.e. Visible Infrared Imaging Radiometer Suite (VIIRS) at 375m aboard SumoNPP, Moderate-Resolution Imaging Spectro-Radiometer (MODIS) at 1000m aboard Terra & Aqua, and Advanced Very High Resolution Radiometer (AVHRR) at 1,100m aboard NOAA 18/19 & MetOp 1/2, made available by IARI Satellite Ground Station during Kharif crop harvest season (October-November) 2018. The standard algorithm of detection of the temperature of a pixel at (4.0 μm and/or 10 to 12 μm) and its difference from the temperature of surrounding pixels was employed for day and night passes. Analysis of active fire locations detected from VIIRS, MODIS and AVHRR between 01st October and 30th November 2018 suggests continuing practice of stubble burning with a total of 75563 burning events distributed as 59695, 9232 and 6636 in Punjab, Haryana and Uttar Pradesh, respectively. District-wise monitoring showed a significant upsurge of fire events during the study period in the south-western and eastern districts of Punjab. Intense fire was witnessed in northern districts of Haryana and western districts of Uttar Pradesh. Comparative analysis shows that the burning events in the current year up till 30th November 2018 are 85% of the events detected in 2017 and about 59.10% of the events detected in 2016. It implies that the burning of rice stubble in the current year has reduced significantly over the past years due to various scheme implemented by the State and Central government

    Association of acute toxic encephalopathy with litchi consumption in an outbreak in Muzaffarpur, India, 2014: a case-control study

    No full text
    Summary: Background: Outbreaks of unexplained illness frequently remain under-investigated. In India, outbreaks of an acute neurological illness with high mortality among children occur annually in Muzaffarpur, the country's largest litchi cultivation region. In 2014, we aimed to investigate the cause and risk factors for this illness. Methods: In this hospital-based surveillance and nested age-matched case-control study, we did laboratory investigations to assess potential infectious and non-infectious causes of this acute neurological illness. Cases were children aged 15 years or younger who were admitted to two hospitals in Muzaffarpur with new-onset seizures or altered sensorium. Age-matched controls were residents of Muzaffarpur who were admitted to the same two hospitals for a non-neurologic illness within seven days of the date of admission of the case. Clinical specimens (blood, cerebrospinal fluid, and urine) and environmental specimens (litchis) were tested for evidence of infectious pathogens, pesticides, toxic metals, and other non-infectious causes, including presence of hypoglycin A or methylenecyclopropylglycine (MCPG), naturally-occurring fruit-based toxins that cause hypoglycaemia and metabolic derangement. Matched and unmatched (controlling for age) bivariate analyses were done and risk factors for illness were expressed as matched odds ratios and odds ratios (unmatched analyses). Findings: Between May 26, and July 17, 2014, 390 patients meeting the case definition were admitted to the two referral hospitals in Muzaffarpur, of whom 122 (31%) died. On admission, 204 (62%) of 327 had blood glucose concentration of 70 mg/dL or less. 104 cases were compared with 104 age-matched hospital controls. Litchi consumption (matched odds ratio [mOR] 9·6 [95% CI 3·6 – 24]) and absence of an evening meal (2·2 [1·2–4·3]) in the 24 h preceding illness onset were associated with illness. The absence of an evening meal significantly modified the effect of eating litchis on illness (odds ratio [OR] 7·8 [95% CI 3·3–18·8], without evening meal; OR 3·6 [1·1–11·1] with an evening meal). Tests for infectious agents and pesticides were negative. Metabolites of hypoglycin A, MCPG, or both were detected in 48 [66%] of 73 urine specimens from case-patients and none from 15 controls; 72 (90%) of 80 case-patient specimens had abnormal plasma acylcarnitine profiles, consistent with severe disruption of fatty acid metabolism. In 36 litchi arils tested from Muzaffarpur, hypoglycin A concentrations ranged from 12·4 μg/g to 152·0 μg/g and MCPG ranged from 44·9 μg/g to 220·0 μg/g. Interpretation: Our investigation suggests an outbreak of acute encephalopathy in Muzaffarpur associated with both hypoglycin A and MCPG toxicity. To prevent illness and reduce mortality in the region, we recommended minimising litchi consumption, ensuring receipt of an evening meal and implementing rapid glucose correction for suspected illness. A comprehensive investigative approach in Muzaffarpur led to timely public health recommendations, underscoring the importance of using systematic methods in other unexplained illness outbreaks. Funding: US Centers for Disease Control and Prevention
    corecore